A three-valued logic
for
software specification and validation

By Beata Konikowska, Andrzej Tarlecki, Andrzej Blikle
June 1988

This is a very early preprint of our paper later published under the same title in VDM’88,
VDM: The Way Ahead, Proc. 2", VDM-Europe Symposium, Dublin 1988, Lecture
Notes of Computer Science, Springer Verlag 1988, pp. 218-242

PRACE IP! PAN e ICS PAS REP-ORTS_

000E¢
@OOC

b

Beata Konikowska,
Andrzej Tarlecki, Andrzej Blikle

A three-valued logic
for software specification
and validation

June 1988
WARSZAWA

90000000000 ®
0000000000000

QO00000000000000OC
OO0000O00000000Ceee

IBSTYTOT PODSTAW IKFORMATYRI POLSKIE) AKADEWIL miu :
IESTIOTE OF COWPUTER SCIEHCE POLISE ACADEMY OF SCIENEGES
00-201 WARSAW, P.G. Box 22, POLAND

QQOQOQOQOCOQOQOQC

0@
QO
OO
(0]@,
OO

'Beata Konikowska, Andrzej Tarlecki, Andrzej Blikle

A three-valued l_o_gi.c
for -
software specification and validation

Tertium tdmeh doiar

635

Warsaw, June 1988

Rada Redakeyjna

~ A.Blikle (przewodniczacy), L.Bolc, J.Borowiec, S.Bylka,
M.Dgbrowski (zastepca przewodniczacego), J.Lipski (sekretarz),
L.Lukaszewicz, R.Marczynsk'i, A.Mazurk_ie'w'icz, T.Nowicki,
1.Seidler, M.Stolarski, Z.Szoda, J.Winkowski

Prace zglosil Antoni Mazurkiewicz

Mailing address: Project MetaSoft
Institute of Computer Science
Polish Academy of Sciences
PKiN, P.0.Box 22, 00-901 Warsaw

~

ISSN 0138-0648 '

N
Printed :as a manuscript
Na prawach rekopisu

:Naktad 350 egz. Ark. wyd. 3,00; ark. druk. 2,25.
Papier offget. kil. ITTI, 709, 70 x 100. 0ddano do
druku w lipcu 1988 r. WDN Zam. nr 371/88.

Abstract e Streszczeme s Conepranne

Dlﬁerent ca.lcuh of pa.rtla.l or t.h_ree-va.lued predlcates have been used and studled by several authors
m the context of software specification, development and validation. This paper offers a critical survey
on the development of three-valued logics based on such calculi.

In the first part of the paper we review two three-valued predicate calculi, based on, respectJVeiy
McCa.rthys and- Kleene’s: propositional connectives and quantifiers, and point out that in a three-
valued logic one should distinguish between two notions of validity: strong validity (always true) and
weak validity (never false). We define in model-theoretic terms a number of consequence relations for
;bree -valued logics, Each of them is determined by the choice of the. underlymg predicate calculus and

g the weak or strong validity of axioms and of theorems. We discuss mutual relationships between

gensequence relations defined in such a way and study some of their basic properties.

. The second part of the paper is devoted to the development of a formal deductive system of

ipference rules for a three-valued logic. We use the method of semantic tableaux (slightly modified to

g_eal with three-valued formulas) to develop a Gentzen-style system of inference rules for deriving valid

iequents which we use then to obtain a sound and complete system of natural deduction rules. We

ha,ve chosen to study the consequence relation determined by the predicate calculus with McCarthy's °
;aropomtmnal connectives and Kleene’s quantifiers and by the strong interpretation of both axioms

and theorems. Although we find this choice appropriate for applications in the area of software

specification, verification and development, we regard this logic merely as an example and use it to

present some general techmques of developmg a sequent ca.lcnlus a.nd a natural deduction system for
& three-valued logic.

Logika tr6jwartos’ciowa dla specyfikacji i weryfikacji oprogramowania.

Wielu autoréw studiowalo rozmmte rachunki czgsmowych lub tréjwartoiciowych predykatéw. Ni-
niejsza praca zawiera przeglad metod konstruowania logik tréjwartosciowych dla takich rachunkéw.

W pierwsze] czgsci pracy przypominamy dwa tréjwartosciowe rachunki predykatéw, oparte o

spdjniki logiczne i kwantyfikatory McCarthy'ego i Kleene'ego, odpowiednio. Wskazujemy przy tym,

- e w logice tréjwartosciowe] nalezy odrézniaé dwa pojecia spelnialnosci: mocna spetnialnogé (formula
zawsze prawdziwa) i slaba spelnialnos¢ (formula nigdy falszywa). Dla logik tréjwartosciowych definju-

“jemy w terminach teorii modeli szereg relacji konsekwencji, okreslanych jednoznacznie przez wybér
rachunku predykatéw oraz mocnej albo stabej spelnialnosci aksjomatéw i twierdze. Omawiamy wza-
Jjemne zwiazki miedzy relacjami konsekwencji zdeﬁmowanyml w ten sposoh oraz podsta,wowe wlasnosai
tych relacji. ‘

Druga czeéé pracy jest poéwigoona opra,cowa.niu formalnego systemu dedukcyjnego pewnej logiki
tréjwartoéciowej. Stosujac metode tabelek semantycznych (nieco zmodyfikowana dla potrzeb logiki
gréjwartoéciowej) budujemy Gentzenowski system wyprowadzania poprawnych sekwentéw, ktéry wyko- .
feystujemy z kolei dla zdefiniowania popr'awnego'i pelnego systemu regul naturalnej dedukeji. Sys-
temy te opracowujemy dla relacji konsekwencji okreslonej przez rachunek predykatéw ze spéjnikami
;gglcznymj McCarthy’ ego i kwantyfikatorami Kleene’go oraz przez mocng spelnialnosé aksjomatéw
1 twierdzeri. Chociaz uwazamy, ze jest to wybdr odpowiedni dla potrzeb specyfikacji, weryfikacji i
konstruowania oprogramowania, w tej pracy traktujemy te logike przede wszystkim jako przyklad,
ktéry wykorzystujemy dla przedstawienia pewnych ogélnych technik konstruowania rachunkéw sek-
wentowych i sfsteméw naturalnej dedukcji dla logik tréjwartosciowych.

._4’_

Tpéxanausafd HOTUKA nna cna&n@&xauan K nposepan /Bepn@n- L
Kauun/ NPOrpPauMEDOBAHAA

Macrne aBTOPH H3YUATH pasnnqgua MCUMCNEEUS UACTHIHHX UIH
TPEX3HAUHHX OPeUEKATOB. Hacroamad padora 3aKIpYaeT B Gels odaop
MEeTOLOB HDCTpOBHHH /KOHGTPprOBaBEH/ Tpexaaaqaux JZOPEE AX4 TAKUX
HCUKC NORK,

B nepsoft wacrE paﬁomn Hanonnaaeu IBa TPEXIHAUHHE MCUUCHEHEA
NpeZUKATOB OCHOBANH, KAE CHGAYET, HA nornqecxnx CBA3AX U xBaHTopax
Maggapreero #® Kngma. : P
j Yxaayen OpZ 3TOMy 9TO0 B Tpexaﬂaqaoﬁ NOTHKE HAKO paannqars
‘5B NOHATHA BHNONHAGMOCTE: CUTBHEAA BHIONHAEUOCTD (¢opuyzs scerza
fCTHHEAR) ¥ criadas ssnonxaeuocmh (@opuyna HEXOTZ@ IOXHAA)..

A7 TpeX3EAuENX NOTHK ONpeZeldeM B TEDUAHAX TeOpuu WeZenel PRI

orHOmeEMY creZoBaEMA, OFHO3HAUHO 1MATHOCTHPOBAHEHI HyTEM BHOODA

HCUMCHEHNS NPeXMKATOR, 4 TAKKe CHIBHOH HIM cnalColi BHONOMHAGMOCTH

axciuoM ¥ TeopeM. (OGCYEIaeM B3auMHHE OBRSE MEXLY OTHOTEHUAMY ;

CHNEeZ0OBa A TAKHM cnocodou onpeneleﬂxﬁx K acnonaﬂs cBoficTBa 3THX
oTdomeREi.

Bropad 4acTh paCoTH MOCBALGHR @opuansnoﬁ nenyxmnsnoﬁ cucTeMe
HexoTopoll TpexsEauRof zoruxu. [puMemdAs weTox eeuanwuqecnnx Ta 6D
(uyrs MozmupunEposeEEs# zus morpeGmocTelt Tpexamaumof HOTrEKE) .
CO373€EM I'eENEHEOBCKYD CECTEMY BHBOZA NpaBHIBHHXI CIEeIYDOMX BNEMEH-
T0B /nOCIeA0BATEABHOCTH/, ROTOPYD UCHOHBSYEM, B CBOD 0u8DE7b,

LAR onpereiicHU# zoppenwxoﬁ u noxmolf cucTeMy ecTecTBeHHOE /Hay~
paisHOft/ EenykmuK. 3T CHCTEMH paspadaTHBaeM ZiS OTHOWNEHUH Clie=
IOBAEMA ONpeieNeHHOTO MCUMCISHHEM NPORMKATOB C JOTUYECKHME
CBA3AME MAKKADTHErC H KBAHTODAME KANEA, a TAKES 4EPes CUIBHYD
BHIOJEAENOCT AKCHOM ¥ TeopeM. XOTA MO HameMy MHCHUD BHOOP 3TOT.
ABIAETCE NOAXOAANEM AJR HoTpeCHOCTed cmenwduxallu, HPOBEPKE :
/Bepuduxanzs/ ¥ mocTpoitky mporpaMumpoBaEEA B faEHOf padoTe noz-
XOnMM K 3TOH NOrWKe OpexAe BCErO K&K K NDUMEDY, KOTOPHE MCHOND-
3yeM INA NPENCTABIEHUA HEKOTOPHX OONMX TEXHUK HOCTDOEHME HCHUHC=—
nespil clenypmMX SNEMEHTOB /NMOCIENOBATENBHOCTE/ M CHCTEM ECTE-
CTBEHHOH /HATYpanbHO!/ ZEZAYKUEM ANd TPEX3HAUHWX JOTHE.

1. Introduction

Tertium non datur — a law of classical logic — states that every hypothesis is either true or false.
Neverthel&s, sentences which people use in formulating thoughts may be meaningless and therefore
neither true ror false “T}ns paper is tall” or “07! > 1” are two such examples.

In every deductive reasoning we can recognize and reject meaningless sentences and therefore every
hypothesis which can be proved at all can be proved using only meaningful sentences. This makes
a two-valued logic an adequate tool for proving facts. The situation changes if sentences with free
* variables are eva.lua,ted' dynamically in the process of running an algorithm. Formulas like “z is tall”™

or “z71 > 1" may be true, false or undefined depending on the value of z. Of course, if an algorithm
funs across an undefined formula, then it either aborts, or loops or produces an incorrect result. In
order to avoid such situations we must be able to describe them formally, and therefore we have
to assume that our formulas (Boolean expressions) represent either partial functions with values in
‘the two-element set {tt, ff} or total functions with values in a three-element set {it, ff,ee}, where
ee represents an “abstract error” or undeﬁ_nedness ‘It turns out that the latter solution is more
convenient since it allows us to treat undefinedness in a lazy, non-strict way (cf. [Blikle 87]).

When we admit a third logical value, we have a variety of choices in formalizing and in using
three-valued Boolean expressions in software specification and validation. First, there are several
ways of extending the classical two-valued predicate calculus to the three-valued case. Three major
candidates for such extensions have been proposed in the literature: a calculus described by S.C.Kleene
[Kleene 38, 52], a calculus described by J.McCarthy [McCarthy 61], and a combination of these
calculi described in [Blikle 87]. Second, for each such extension we have two major strategies of
using three-valued predicates in the speaﬁcat:on and in the validation of software. One strategy
consists in constructing a special algebra of three-valued predicates which is later used at the level of
a second-order two-valued logic. This strategy has been chosen in [Blikle 87] where it was applied to
the McCarthy-Kleene calculus in the context of a pa.rt:cular softwar&speaﬁca.tlon language It was
discussed later in [Blikle 88] in a more general setting. :

‘Another strategy consists in.developing a three-valued forma.l logxc Here we have agam several

. possibilities. First we choose the underlying predicate calculus. Besides the choice between Kleene’s
and McCarthy’s (or yet different) propositional connectives: and quauhﬁers, we also have to decide
- whether we accept non-monotone: propositional connectwes Second, we choose the concept of the
validity of a formula. In a three-valued logic we _chstlngu]sh between strongly valid (always true)
and weakly valid (never false) formulas. When we construct a logic, i.e. an axiomatic theory of a
consequence relation, we can talk about strong and weak axioms (in the above sense) and strong and
weak theorems. This yields four possfbmtxes Finally, we can develop a sequent deduction system or
a natural deduction system. -
The issue of three-valued logic in the context of software specification and validation has recentiy :

- attracted much attention. Of the most important contributions we should mention [Hoogewijs 79, 83] :
where the author discussed a three-valued logic over Kleene’s connectives (including a non-monotone
connective) and quantifiers, with strong axioms and weak theorems. Another logic over Kleene's
caleulus, with a non-monotone connective, strong axioms and strong theorems has been presented in
[Barringer, Cheng & Jones 84] and its applications were discussed in [Jones 86, 87]. [Hoogewijs 87]
gives a comparison of the two systems. [Owe 85] develops a formal logic with weak axioms and
weak theorems based on a rather unusual predicate calculus which is a mixture of strict logical

g

connectives, i f-expressions (under the assurnptions in [Owe 85] this is sufficient to define both Kleene's .
and McCarthy's connectives) Kleene’s existential quantifier and a “weak” universal quantifier. A more
complete discussion of different three-valued logics may be found in [Cheng 86]. :

In this paper we attempt to tackle two issues. First, we give a general comparative analysis of
semantic consequence relations corresponding to various three-valued logics. In'this way we come
up with a number of conclusions about three-valued logics without even starting to think about the
proof-theoretic machinery of deduction rules. We compare these consequence relations with each
other and with the classical consequence. For instance, we point out that a three-valued consequence
relation based on any of the two calculi we consider (both without non-monotone operators) with
strong axioms and weak theorems, is equivalent to the classical consequence rélatic.»n‘(Sec. 4), and we
discuss where we can and where we cannot expect the rule of deta.chzﬁe_:ntr and the deduction theorem
to hold (Sec. 5). J -

The second objective of this paper is to develop a system of inference rules for a three-valued
logic. We develop two sets of proof rules, two formal systems (a sequent calculus and a natiral de-
duction system) for the Kleene-McCarthy logic without non-monotone operators, with strong axioms
and strong theorems. We have chosen these parameters for our logic following motivation given in
[Blikle 87, 88], but to a large extent we regard this logic merely as an example which we use to discuss
some general techniques of developing sequent proof rules and natural-deduction proof rules for an
a.rbxtra.ry three-valued logic. :

We have tried to make our paper possxbly self-contained for a reader who is not log1c1a.n However,
we could not make it a complete tutorial. Therefore we skip some standard technical details (trying
to outline all the ideas, though) which may be found in the literature.

Acknowledgements

. We are grateful to A.Hoogewijs, J.H. Cheng, 0.Owe, N.Haichu and D.Sannella for their comments
on an early version of the paper, which helped to 1 1mprove the presentation and discussion of many
points here.

2. Introductory concepts

In this section we define and discuss the predicate calculi of Kleene and of McCarthy. We also (ieﬁne aiow
combination of these caluli which is to be used later as a basis for our logic. Let us start by in‘trodu_cing
some notation.

If A and B are sets, then by A — B we denote the set of all total functions from Ato B. By
f:A — B we denote the fact that f is 2 total function from A to B. g:A — B — C abbreviates
g: A — (B — C). Instead of f(a) we write f.a and instead of (g.a).b we write g.a.b. For any e € A,
be Band f: A — B, by f[b/a] we denote a modification of f defined as follows:

fla/bl.z = if 2 = e then belse f.z

Let . :
Boolerr = {it, ff, e}

be our three-element set of logical values (Boolerr stands for Boolean + Error). We i'J_:\t.roduc.;e

~1

" McCarthy’s conditional operator:
M8, . Boolerr x Boolerr x Boolerr — Boolerr

where for any a,b,c € Boolerr,

a—-hi%b,c ==b s fora =it
i c-iidorag =7
: a - for a = ee.

McCarthy’s propositional connectives are defined as follows:
not a Sioe M fftt : — negation,
aorbd = a5 tt,b 2 — disjunction,
aand b = ¢ M5 Boffs : -~ — congjunction,
aimplies b = o S b1 — implication.

In all the above definitions “=" denotes the identity in Boolerr.
McCarthy’s connectives have four important properties:

1. They extend classical connectives, i.e. coincide with them on the logical values #t and ff. They
also satisfy the classical mutual relationships such as for example:

a implies. b= (not a) or b (1)
@ and b= not{(not a) or (not b)) (2)

However, not all classical identities hold. For example, neither of the following is true in general:

saorb=bora

e c or (not a) = ¢

2. They allow for a lazy evaluation of expressions and in that case they again coincide with classical
operators. For example, if we evaluate ezp; or ezp; and if exp; evaluates to ¢, then we can
abandon the evaluation of ezp,, since independently of its value (even if it is ee) the value of
the whole expression is #t. . :

3. They are monotone in the usual cpo over Boolerr:

: tt\ /ff

ee ‘
That is, if in a propositioﬁal expression we replace one of its current arguments by ee, then
the value of that expression either remains unchanged, or becomes ee. This is in contrast with
some other three-valued calculi. For example, [Hoogevijs 79, 83, 87] and [Barringer, Cheng &

Jones 84] study a calculus similar to Kleene's calculus as presented below, but with a total
non-monotone unary connective A which determines whether or not its argument is “defined”

(ie. # ee).

Lt

4. They are strict Wlth respect to their left argmnent i.e. assume value ee whenever their left 3
argument is ee.

Properties 2 and 3 guarantee that the third logical value ee may be interpreted not only as an
abstract error (i.e. as an error signal generated by the system), but also as true undefinedness resulting
from a nonterminating computation. Due to property 4, McCarthy’s Boclean expressions may be
implemented on a sequential machine. : 3 :

As the reader has probably already noticed, McCarthy’s disjunction and con_;unctmn are not com-
mutative. This is the price which we have to pay for a propositional calculus which has properties 1; 2
and 3 and which is sequentially implementable at the same time. If we do not care about the latter
property, we can select the propositional calculus of Kleene, where negation (not) is the same as
above, disjunction (org) is the fcllowing extension of the classical connective:

tl oryx ee = ee org i =it
a Oryx ee = ee OFg a = ee for a # i,

and the remaining operators are defined by 1dent1t1es (1) and (2). Now we have the commutatw:ty
of conjunction and of disjunction, but in order to implement expressions in the case where ee may
correspond to a nontermmatmg computa.tlon we need unbounded parallelism. Indeed, when we
compute ; ;

€Ipy OTK ... OTK €TP,

we have to compute all exp; (i = 1,...,n) in parallel in order to determine whether one of them
evaluates to ti. _ '
Now, let us talk about predicates and quantifiers. In this section we discuss them on semantic,
model-theoretic grounds. The corresponding formalized language of logic is defined in the next section.
Let Ide be an arbitrary nonempty set of identifiers (variables) and let Value be an arbitrary
nonempty set of values. A state is a total function from identifiers to va,lues, a predicate is a total
function from states to logzcal values:

State = Ide — Value
Predicate = State — Boolerr

Logicians would have probably preferred to say valuations rather than states. We use the latter
term since it is more common in the field where our logic is to be applied. :

The elements of State will be denoted by sta, the elements of Ide by z,y,z, .. ., the elements of
Value by v, val, and the elements of Predicate by p, q,. .., all possibly with indices, primes etc.

In this framework quantifiers may be regarded as functions that assign predicate transformers to
identifiers:

Forall: Ide — Predicate — Predicate
Exists: Ide — Predicate — Predicate

In this paper we define quantifiers after [Kleene 52] by extending the corresponding classical
definitions to the three-valued case. For all p € Predicate, z € Ide and sta € State we set

Ly

Forall.z.p.sta = if for all values val € Value, p.(sta[val/z]) = it;

ff if for some value val € Value, p. (sta[val/z]) = ff;
ee otherwise, ie.

if for no value val € Value, p.(sta[val/z]) = ff,
but for some value val € Value, p.(sta[val/z]) = ee.

Exists.c.p.sta= tt - if for some value val € Value, p. (sfa[va{fz]) = t-t;
; ff if for all values val € Value, p. (sta[val/z] T
ee otherwise, i.e.
if for no value val € Value, p.(sta[ua!/:&]) = tt,
. but for some value val € Value, p.(sta[val/z]) = e

These quantifiers satisfy de Morgan’s laws .and generalize Kleene's' conjunction and disjunction.
. However, they are not the generalizations of McCarthy’s respective connectives. Quantifiers which
attempt to generalize McCarthy’s connectives have been defined in [McCarthy 61]. In that case:

Existspr.z.p.sta = tt if fer some value val € leue,'p (sta{vral/z]') =1
: _and for all values val € Value, p.(stalval/z]) # ee,

all other cases are cha.nged aocordmgly, a,nd the universal quantlﬁer is then deﬁned by the de Morgan
laws. ; : ;
The Kleene definition of quantifiers is, in our opinion, more nat:ural. Moreover, McCarthy’s quan-
tifiers are non-monotone and for a recursive p, Existsys..z.p is, in general, not recursively enumerable.
In the sequel our predicate calculus, based on McCarthy’s propositional connectives and Kleene’s
quantifiers, will be referred to as the MK -caleulus (for “McCarthy-Kleene”) and the calculus based
on Kleene’s propomtlona.l connectlves and quantifiers as the K calculus.

a Consequence relatlons based on three-valued predicate
calculi

A formalized logic may be regarded as an axiomatic theory of a consequence relation between formulas
(we refer to [Avron 87] for an expository presentation of this point of view). In this section we define

. a certain scheme of such a relation (based on a modei-theoretic view of three-valued predicate calculi)
and'we instantiate it later to different logical systems. We start from the concept of a formalized
language and of its semantic interpretation. Let: :

Ide be a countably infinite set of identifiers (va.riab!es),
e s be a set of m-ary function symbols, m = 0,1,...,
Fun = U=_, Fung, ; :

Pred, be a set of m-ary predicate symbols, = 1520y

Pred =1J2_, Pred,,

“and let

g
Term denote the set of all terms constructed in the usual way over :
Fun, Ide and appropriate au)uhary symbols such as parentheses, : «
: comimas, etc. . :
Form denote the set of all formula,s constructed in the usual way over
Term, Pred, appropriate a.uxlhary symbols a.nd the follomng_
- special loglca.l symbols TV A D, Vo3 e

The two sets Term and Form const:tute our formahzed loglca.l language Th:oughout the rest of
the paper we will consider an arbitrary (but ﬁxed) language of such a form For t.echmcal reasons we
assume that at least one Pred,,; m=1,2,...;is nonempty.

It should be pointed out that in this paper we deal with one-sorted logics, tather than w1th many-
sorted logics which are more general and more a.ppropna.te for applications to software specification
and validation. This, however, iis only for the technical ‘convenienice of the presentation. AH the
notions and results we present carry over directly to the many-sorted case. !

A logical structure, ot simply struclure (sometimes also-called a model but we reserve this term for
a.somewhat different concept) for a gwen logical language consxsts of a nonempty set Value of values
and of two families of funct.lons -

e Funm — Value™ — Value ifor m-— 0,15
AR Pred — Value"' — Boolerr : for m=1,2 ..

(Recall that Boolerr = {#t, £, ee} is our set of th.ree 10g1ca.1 values J : :
We say that a structure is classwal if for m = 1,2,..., for all p € Pred a;nd 7 e Value :
B e .
The careful reader has probably not:lced that we use the term pred:mte in this paper to name both

functions mapping states into Boolerr (as introduced in the previous section) as well as predicates in

the more traditional sense, i.e. functions ma,ppmg velues into Boolerr. We hope that this will never
lead to any ambiguity.

Observe that from the formal point of view the meanings of all funchmn and predicate symbols are
total functions. However, since the set Boolerr contains the “undefined element” ee, we can interpret
our predicates as partial. The same, of course, may be applied to functions. Each time we wish to do so,
we may assume that the set Value of values contains a special element representmg “undefinedness”.
The only additional requirement would be that all functions and predicates are monotone w.r.t. the
obvious flat ordering with the “undefined element” at the bottom. In this sense our model covers
partial functions as well, We are not going to discuss this explicitly he‘re,‘ since contrary to the case
" of propositional connectives over Boolerr, we do not consider any specific functions or predicates.
In particular, in order to keep our paper within a reasonable size, the equality predicate will not
be discussed at all. Let us just point out that in the case of partial functions the requirement of
monotonicity mentioned above excludes the so-called strong equality (cf. &.g. [Barringer, Cheng &
Jones 84]) which is not monotone.

One more general comment is perhaps appropriate here: we . have mtroduced in our model only"
‘one “undefined value”. This means that we have identified two different kinds of undeﬁnedness

e the undeﬁnedness resulting from an infinite computa,hon_, and

e e

¢ the undeﬁnedness resultmg from a computable error signal (an abstract error in the sense of
[Goguen 77])- :

We beheve that this i JS appropriate at -the logical level where we describe and prove properties of
states, and so indirectly software properties as well (we sketch this view in more in detail Section 10}.
This is, of course, in contrast with the situation at the level of software semantics, where it is-necessary
not only to distinguish between these two kinds of undefinedness, but in fact to distinguish between
different error messages and perhaps describe some operations which model the “error handling” i
the software system. In our view, however, this should be modelled at the level of “data” for our 1og1c,
via the functions of the structure that describes the software system, and should not affect directly
the logical part. Thus, in the set Value of values, but not in the set Boolerr of logical values, we
would normally replace a single “undefined element” by a set of error elements

3

Error = {mf, ey oy eTT, -

. where inf represents the “true undefinedness” resulting from an infinite computation and erry, ...,
errn represent ci)n}pu'nabie error signals. Notice that from the abstract point of view the computable

error signals are as much “normal elements” of the structure we describe as any other data and
they should be treated as such in our theory. In particular, we would require that the functions,
and predicates of the structure we deal with are monotone w.r.t. the flat ordering where the “true
undefinedness ele}ment inf is at the bottom, and all the other error elements are incomparable (and
incomparable with other data). This allows a natural description of “error handling” without affecting
the logical issues we discuss in this paper.

For every structure we define the set of states (over this structure):
s State = Ide — Value
and the semantic function for.terms:
T:Term — State — Value

(the obvious definition is omitted — T'.t.sta is the value of term t in the structure in state sta).
A semantic function for formulas will map ‘them to predicates (i.e. functions from states to the set .
of logical values). Such a functlon is unambigously determined by any interpretation of the special
logical symbols, i.e. by any (three-valued) predma,te calculus (together with a semantic function for

terms). Since in the previous section we introduced two such calculi, with every structure we associate
two semantic functions for formulas: :

Frge: Form — Predicate
- determined by the MK -calculus, and
. ; : : Fy: Forﬁ — Predicate
—. determined by the K —calculué, v;'here
Predicute = State — Boolerr.

Thus, for example, for any formulas 1, p; € Form and sta € State:

—12—

Fm.-(%_ vV gog).sia = FM.¢1.§ta or Fuyx.ps.sta
Fr(p1 V @2).5ta = Fr.py.sta org Fr.po.sta

and for any formula ¢ € Form and identifier = € Ide:

Fiux.(3z)p = Exists.z.(Fyx.p)
FK'.(':}:::):,D = BExists.z.(Fx.p)

(again, a complete formal definition is omitted). - : :

Clearly, if the considered logical structure is classical then the two semantlc functmns for formulas
coincide, which we will make exphcat by usmg a common name for thern in classx:a,l structures we
define Fg = Fye = Fx.

- Let A be an arbitrary structure with the semantics of formulas Fuyx and Fg, ste € State be
an arbitrary state (over A) and let ¢ € Form be an arbitrary formula: ‘The following definitions
are analogous for the MK -calculus and for the K-calculus, so we give them in a schematic form for
V € {MK,K}.

‘We say that A4 .stmngly V- satusﬁes ¢ in sta {or f;hat @ stmngly V-holds ‘in' (A; .sta)], written
(A, sta) }:s v, if Fy.p.sta =tt.

We say that A weakly V- satssﬁescp in sia (or that ¢ weakly V-holds in (A sta)), written (A4, sta) |~_~w .
o, if Fy.p.sta & ff.

. If Ais classical then the above notions co:nc1de (a.nd coincide with the classical deﬁmtmn) and we
simply say then that A satisfies ¢ in sta (or that ¢ holds in (A, sta)).
Further, let Az C Form be an arbitrary set of formulas, which we shall refer to as axioms. We
say that (A,sta) is a strong (respectively, weak) V-model of Az, or that it stromgly (respectively,
weakly) V-satisfies Az, if each ¢ € Az strongly (respectively, weakly) V-holds in (A, sta). We say

that (A, sta) is a classical model of Az if A is classical and each ¢ € Az holds in (A, sta). '

Now we can introduce a parametric class of consequence relations:

; }:E_rg 9Frrm < Form

where V € {C, K, MK} and 8,7 € {s,w}.
We say that a formula ¢ € Form is a $-4-V-consequence of Az, in symbols:

Az [=fy ¢

if the formula ¢ ¥-V-holds in every 8-V-model of Az'.
(In examples we write @y,...,%n }'_'ﬂqr o instead of {w1,-..,¢n} }:}57 ®.)
For each V € {MK, K} we have four corresponding consequence relations, depending on whether
we are considering strong or weak models and strong or weak theorems. In the seque! however, we
-exclude w-35-V-consequences from our considerations, since they lead to theories, where an axiom does
not need to be a theorem.
- . As to the other papers on three-valued loglcs whxch we mentioned earlier, [Hoogewus 79, 83] deals .
 with s-w-K-consequence, [Barringer, Chang & Jones 84] probably with s-s-K-consequence (although

>

! We hope that this notation, although not quite formal, is understandable; for example, by “w-K-holds”
© we mean “weakly K-holds”, by “s-MK-model” we mean “strong MK -model”, etc

S

in that paper the authors restrict their attention to syntactic proof rules leaving the semantics of their
logic completely undeﬁned) and [Owe 85] with w-w- (yet different calculus)-consequence.

. B-7-V-consequences of an empty set of axioms are called f-v-V-tautologies. However, we do not
have to mention the 8 parameter when dealing WIth tautologies, since every w-model of the empty set
of formulas i$ also an s-model of that set and vice versa. The fact that a formula ¢ is a v-V-tautology
is denoted by k=¥ . : ; :

' When we consider the classical consequence relation we may-omit both the 8 and v parameters,
since ‘strong satisfaction and weak satisfaction mean the same in classical structures. We write,
therefore, Az [=°' ¢ and }::C ¢ with the obvious meaning.

. The consequence relations introduced above may be referred to as the consequence. relations of
truth, as opposed to the consequence relations of validity where open formulas are always (implicitly)
‘universally quantified (cf. [Avron 87] where this distinction is made: explicit and d1scussed) For
example, the classical consequence relation of va,lzd1ty is defined as follows:

Az |=Wh dity P if for every classical structure A:
if for every state sta over A, (A, sta) is a model of Az
then for ey state sta’ over A, formula ¢ holds in (A4, sta’).

Clearly, the dlﬁerence occurs only if we allow open formulas to be used as axioms, and so we consider
it irrelevant for practical purposes. Although it seems more convenient to deal with the consequence

relations of truth here, the technical analysis and results presented in the rest of the paper carry over
. with little modification to the case of the consequence relations of validity.

4. A comparison of ﬁ-v—V_;Consequence relations

In the ﬁrevious section we have introduced a number of (apparently) different consequence relations
on the same set of formulas of ‘a formalized language. We have already mentioned some trivial facts
about their mutual relationships, for example that all the consequence relations determined by the
classical notion of a structure coincide. In this section we will have a closer look at the somewhat less
obvious relatibnships between the consequence relations based on three-valued calculi.

Let us start by pointing out some facts connectmg the different notzons of satisfaction we consider

Fact 4.1 For any structure A and state sta over, A for any formula ¢ € Form,
- if Fu.ip.sta # ee then Fy.p.sta = Fug.p.sta.

Proof An obvious proof by induction on the structure Qf i is omitted. : o
© Fact 4.2 For any structure A, state sta over A and formula ¢:

1. {A,sta) =M o implies (A, sta) =X ¢ (not reversible in general).

2. {A,sta) =K ¢ implies (A4, sta) - MK & (not reversible in general).

3. (4, sta) =K o implies (A, sta) EXMX ¢ (not reversible in general).

s e

Proof All the implications follow directly from Fact 4.1. To prove that they are not reversible,
consider the following formulas (throughout the paper we will use the symbol = to denote the textual
identity of formulas)

' VEZOVZ <O

V>0

If R is the usual model of the la,ngua,ge of a,nthn:etlc a.nd .sta Tis less than 0, then ©1 strongly K-holds,
but does not strongly MK-holds in (R, ste}; 2 “weakly MK-holds, but does not- strongly K-hold in
(R, sta); and 1 weakly MK-holds, but does not wea,kly K-hold in (R, sta) ; _ o

¥1
P2

R m

- Lemma 4.1 Let V € {MK K}. Consider two structures A and A’, which have a common’ set Value :
of values and common semantics of function symbols (hence a common semantics of terms as well).
Further, assume that predicates of A’ are more defined than the corresponding ones of A, i.e. that for
m=1,2,.., for p € Pred,, and ¢ € Value™, if P,.p.¥ # ee then P..p.¥ = P,.p.v. Let Fy and F4
be the semantics of formulas in A and A’ respectively. ; i

Then: for any formula ¢ € Form and state sta over A (which is a state over A’ as well),

Fy.p.sta ee implies Fy.p.sta = Fo.p.sta

Proof Aga.ih, we omit a.'rather'stra,ightfor‘#a.‘rd proof by structural induction on . (=]

It should be pointed out that the above lemma (and its consequences, like Corollary 4.1 and
Theorem 4.1.4 below) holds only because all. the propositional connectives and quantifiers of the’
calculus we use are monotone :

- Corollary 4.1 Let Ve {MK K } If a sef of formulas Az C Form has a strong V—model then it haa

a classical model.

Proof Let A be a structure and let sta be a state over A. Define A to be the “positive totalization”
of A, i.e. a classical structure which is the same as A except that in A* form = 1,2,..., forp € Pred,,
" and ¥ € Value™, P}.p.¥ = it whenever Pp,.p.0 = ee (and P} p.0 = P,.p.0. otherw'lse) e
Assume now that (A sta) is a strong V-model of Az. Then by Lemma 4.1, (A*, sta) is a classical
- model of Az. - (8]
Notice that the above corollary implies that under strong interpretation of axiomns we have no way
to ensure that a formula is undefined. More precn.sely.

Corollary 4.2 Let V € {MK,K}. For any set of formulas Az C Form and formula @ € Form, if
Az =7, @ A —p then Az has no strong V-model, :

Proof Follows from Corollary 4.1. : o
We are ready now to state the main theorem of this section, whmh fully describes the relationship
between the consequsnce rel_a,tlons we consider.

Theorem 4.1 For any lAz C Form, p € Form, V€ {MK,K} and 8,7 € {s,w}:
1. Az o ¢ implies Az =5, ¢ (not reveisible in general)

o =Y ¢ implies Az =Y, » (not reversible in general)

e iE

.-Ar }#E,r implies Az =
4. Az piff Az],
5. In general neither Az =MK 1mphee A:r: |-—~,m ',a, nor Az X (p implies An: MK 5 That is, the
s-8-K-consequence and s-s—MK -consequence are incomparable. o
6. In genera.l neither Az |=J; ¢ implies Az =3, ¢, nor Az 5., @ implies Az Y. . That is, the
5-5-V- -consequence and the w-w-V-consequence are mcompamble
7. In general neither Az =K, ¢ implies Az =X . nor Az MK o implies Az =K . That ie.
: the w-w-K-consequence and the w-w- MK - -consequence are incomparable.
,?roof ;
1. Follows dlrectly from the fact that strong V-satisfaction implies weak V-satisfaction. :
To see the nonreversibility of the implication notice that if a formula tau is a classical tautology
-(e-g. tau & (Vz)(p(z) V =p(z))) then ~tau never strongly V-holds, and so ~tau EY, ¢ for all
formulas (p, but tau is weakly V-satisfiable, and so there are formulas ¢ € Form such that
—iau };&
2. Follows d.lrectly from the fact that strong V»sa,tlsfa.ctlou implies weak V-satisfaction, but not
vice versa 1n general
3. This is a direct consequence of the fact that in classical structures both sema.ntlc functions P
and Fy coincide with the classical interpretation of formulas.
4. Because of the above, it is enough ts prove that if Az = ¢ then Az =Y, o.
Let A be a structure and let sta be a state over it. Define AT to be the “p051t1ve totalization”
of A as defined in the proof of Corollary 4.1.
Assume now that (A,sta) is a strong V-model of Az. Then by Lemma 4.1, (A*,sta) is a
classical model of Az, and so by the assumption, {At,sta) satisfies . Thus, by Lemma 4.1
again, {4, ste) weakly V-satisfies ¢.
5. Just consider the following counterexamples:
o (Vz)(p(c) V g(2)) E=5f¥ (V2)(p(2) V —p(2))
(Vz)(p(z) V g(z)) 55 (Vz)(p(z) V =p(2))
s (Vz)p(z) EE (V2)(e(2) V p(=))
(Yz)p(z) P (V2)(9(2) V p(2))
6. To see that the first implication does not hold, noticé that if tau is a classical tautology then (just

as in 1. above) —tau i:s, w for all formulas ¢, although clearly there are formulas ¢’ € Form
such that —tau £y ¢,

To see that the second implication does not hold, consider weak and strong V-tautologies: every
classical tautology is a weak V-tautology, but not necessarily a strong one. :

6 -

7. Just consider the following countérexamples: -

o (¥2)(p(z) A 4(z)) Ebw (V2)a(2)
(Yz)(p(2) A g(2)) Pl (Vz)a(z)
s (Y2)(p(z) A -0()) Fa (VE)(P(2) A g(2))
(Vo)(p(z) A —'P(r)) b‘l:ww (Vw) (p(z} A q(w))
s : T e D
' The above theorem may be Summarizéd by the,{oﬂdwing picture, where the arrows represent all
the inclusions (except those that, follow by tra.n_sitivity) between the consequence relation: |

SE

Ee o

*_ For tautologies we have the following analog-of the former theorem:

_Corollary 4.3 For any f € Form and V € {MK, K}:
1. =7 v implies k=, ¢ (not reversible)
2 Eleiff e

Proof Follows from the appropriate parts of Theorem 4.1 e e
Notice, however that the first part of the above corollary hoids tmwa]ly' : X

Fact 4.3 Let V € {MK,K}. In our logical language there are no strong V- tautologlm That is, for
no formula ¢ € Farm, EY e

Proof Consider a structure A with totally undeﬁned predicates, i.e. such that for m=1,2,..., for
p € Pred,, and ¥ € Value™, Pn.p.t = e€. By an easy induction on the structure of formula ¢ € Fm
we can show that for all states sta, Fy.p.sta = ee. o

Although s-s-V- conseqﬁence and w-w-V-consequence are incomparable (by Theorem 4.1.6) there
_1s an intrinsic relationship between them

Fact 4.4 Let V€ {MK K} For any formulas y,% € Form
P }zss lﬂ L i=ww S

T

:Prdof Follows from the fact that for-any. stnictu_re.A and state stq over A
. {A sta) l?éa o iff (4, sta) Y “'4"
® (A sta) }=, ga iff (A .sta) Y —p .

5 Some logical properties of ,B-'y—V;consequence relations

" By a logic over a (semantic) consequence relation = we mean a set of syntactic inference rules whic:-
_ define a syntactic consequence relation | (sometimes referred to as syntactic entailment). This nev
- relation must be at least consistent with the former, i.e. Az I (must imply Az }= . If the underlyin,
- formalized language is of first order (as in our case), then we should also try to make this new relatior
. complete, i.e. such that Az = p implies Az | . As is known from the famous Godel incompletenes
~ ‘theorem, we cannot expect a complete I for a second-order logic.
: _Although we have not. yet presented a logic for any of our consequerice relations, we nevertheles: -
can investigate the properties of such logics, since if I- is consistent and complete, then it coincides wit!
k=. We consider below some basic properties of classical logic: the rule of detachment, the deductio:
theorem and the relationship between the consistency of a theory and the existence of a model. W
- check which of these properties are satisfied by our consequence relations. .
It turns out that from this point of view MK-calculus and K-calculus are quite similar. Let
'V € {MK, K} throughout this section. Recall that by Theorem 4.1 the s- w-V-consequences coincide
with the classical oonsequenee Thus, we m]] oonslde: below only 3-3- V-consequence and w-w- V

In clasmd logic, one of the most frequently used inference rules is the rule of detachment alse
known as modus ponens. T]ns rule says that

Azlztp:)qbandAz]::p]mphesA.’tI:qb

‘Theorem 5.1 The zuic of detachment is satisfied by s-s- V—consequenoe, but is not sa.tlsﬁed by w-w
S ot pesics:

Proof For s—s—V—consequenoe. for any model A.a.nd a state sta, ifeD t,b and ¢ strongly V-hold i1.
{A, sta), then clearly ¥ strongly V-holds in (4, sta).
For w-w-V-consequence: just notlee,tha.t

(Vz)(p(z) A —p(2)) i (Y2)(2(2)) D (Vz)(a(=))
(Vz)(p(z) A —p(2)) g (Y2)(p(2))
(Vz)(z(z) A -p(2)) l*E.;. (Vz)(a(z))
e i
Anotliér_very important property of classical logic is the deduction theorem which establishes the :
following relationship between the logical consequence relation and implication: .

Azl viff AzU{p} v

e

If the deduction theorem .hblds, then proving that a formula ¢ is a logical consequence of a finite set of -
axioms {i,...,¢.} may be reduced to proving that the implication p1 A...Apn D 1 1s a-tautology; -

and vice versa: proving that the implication @1 A... Apn D ‘{, 15 a taut,ology may be reduced to
proving that 3 is a logical consequence of {¢1,. . ,zpﬂ}

Theorem 5.2 For any set Az C Form of axioms and formulas @, € Form:
1. Az Y, ¢ D o implies Az U {¢} Y, %b, 'St;t the iﬂlplication‘is not reversible in general.
2. Az U {p} B ¥ implies Az Eyy, ¢ 2 1}), but fhe in'ﬁplicatioa"l is not i'eversil:;le in general.
.Proof : | ' %
1. The implication follows Aimmedia.tely by the rule of detachment (Th. 5.1)
To see that it is not revers:hle, notice that o =Y. ¢, but Y. ¢ D ¢ (by Fact 4.3). :

9. Assume that Az U {¥} Eyw ¥, but Az Y, » D ‘¢‘, j.e. there exists a weak V-model {A, sta)

- of Az such that ¢ D ¢ does not wealdy V-hold in {A, sta). By definition this means that ¢
strongly (and hence weakly) V-holds in (4, sta) and ¢ does not weakly V-hold in {4, sta), which
yields a contradiction.

The opposite implication would entail the rule of detachment, whmh by Theorem 5.1 does not
hold for: w-w-V-consequence. :

For-any consequence relation = and a set of axioms Az, by a theory over Az we meé.n the set
Cn.Az = {p| Az = ¢}

of all the consequences of Az, We say that A—:r is inconsistent if there exists a formula ¢ such that
both ¢ and —¢ belong to Cr.Az. Otherwise we say that Az is consistent. :
In the framework of classical logic the following properties of a set Az of formulas are equivalent:

1. Az is consistent,
2 Cn.Az # Form, i.e. there is a formula ¢ such that Az j ¢,
3. Az has a model.

Theorem 5.3 Let Az C Form.
1. For s-5-V-consequence the following properties are equivalent:
(a) Az is consistent,
(b} Cn.Az # Form,
{c) Az has a strong V-model.

2. For w-w-V-consequence:

(a) if Az is consistent then Cn.Az # Form,

D.

e

semantic consequence relation we are studying.

Lo

(b) if Cn.Az # Form then A:;:I has a weak V-model,
(c) Az may have a weak V-model and be inconsistent.

. Proof Let 8 € {w,s}. In both cases, if Az is consistent then for any ¢ € Cn.Az, o & Cn.Az

-and so Cn.Az # Form. Next, if Az has no 8-V-models then by our definition Cn.Az = Form. In fact.
for weak V-models this implication holds trivially, since any set of axioms has a weak V-model (take
the structure with totally undefined predicates). To complete the proof of the implications that hold.

notice that if Az has a strong V-model then for any formula ¢ € Form, if ¢ strongly V-holds in this
model then —xp does not strengly V-hold in it, and so indeed Az is consistent (for 3-3-V-consequence).

To see that for V-w-w-consequence a set of axioms may have a (weak) model and be inconsistent
at the same time, consider 4z = {(Vz)(p(z) A -p(2))}. : : ; e

B Sequents and signed formulas

In the rest of the paper we will present a formalized logic corresponding to the s-s- MK -consequence
relation defined in the previous sections. In fact, we are going to develop two equivalent deduction
systems for this consequence relation: a Gentzen-style sequent calculus and a natural deduction
system. . : : i - :

Let us begin with a sequent calculus of Gent wen’s type (see e.g. [Beth 59]). Recall that we are

- dealing with an arbitrary but fixed formalized logical language as presented in Section 2.

As usual for Gentzen-style calculi, we will formalize not just s-s- MK -consequence, but its gener- :

- alization to the multi-conclusion case defined as follows: for any -two sets of formulas Az, ® C F. orm,

we define .
: : Az MK &
to mean that at Jeast one formula ¢ € @ strongly MK -holds in every strong MK -model of Az.

By a sequent we mean any pair (I', A} of finite sets T’ and A of formulas, I', A C Form. Sequents
are traditionally written in the form T’ F A. Also traditionally, comma appearing in a sequent denotes
the set-theoretic union; for example ¢, T F A should be read as {e}UT I A.

Notice that since from now on we are dealing with only one consequence relation, we omit any

: decoration on the entailment symbeol . Similarly, we omit any decoration on the semantic consequence

and write simply = for |=}, “satisfies” for “strongly MK -satisfies”, “model” for “strong MK -model”.

etc. Tl . : ;
- A sequent T I A is valid if for every model (A,sta) of T at least one formula § € A holds in
(4, sta). : 2 : : ;

Thus, for any (finite) set of formulas Az C Form and formula ¢ € Form, the sequent Az F {y}
is valid if and only if Az = . This implies that the syntactic entailment F in a valid sequent may
indeed be viewed as a formal counterpart of (the generalization to the multi-conclusion case of } the

The main problem we have to cope with to develop a formalized logic for the s-s-MK. -consequence
is, of course, that we are dealing with a three-valued calculus. One way of reducing this three-valued
case to the standard situation is to introduce so-called signed formulas. ; _

A signed formula has the form either T or NTy (to be read “p is true” and %o is not true’,
respectively) where ¢ € Form is an arbitrary formula. Thus, the set of all signed formulas is defined

~ as follows:: ;
_ SForm = {Trp, NT] p € Form} ;
Let A be any logn:al structure mth the semantms of formulas FMK The smamhc ‘I‘u.nctmn for s1gned

formulas
: .S'F SF'orm — State — Bool

~ where Bool = {it, _ff} is deﬁned ina mthe; obvmns wa.y foer a.ny formula. r,a € Fm‘m a.nd state sta":"
over A : :

. SF.T:p.sta SH I{FMK cp.ata 1t
: o ff otherwise, -
SFNTp.sta =ff ifF.x.wta'; #,

.t _othermse._ :

Itnasytoseetha.twecanalwaysmthevahe(mﬁ‘wlar} ofanyﬁ:mﬁ.just by mnsxdermg

l - the truth of appropriate signed formulas:

; .FactG.I FuanyﬁmﬂapEan,ﬁxanystruchueAandstatestamJt
: LFm.qG_sta—&ﬂfﬁTlp.sh-tt \
Z.F.-.p.sia 5 if SFT~psta=1,

3.Fg‘.p.ﬂ¢ ce if SFNTp.sia= .ﬂ‘m’—wp.sta o

]

CmduanyslrmtmeAandstaﬁemmA. Justasﬁzfmnmhs,hanymgnaiﬁommh i

. pEMnsqﬂntAahs_ﬁapum,mthztpH&u(A,sh)i.ﬂ?m = tt. For any set -

ﬂcmrmafugndinmhs,wesyﬂnt{A,da}mamddofﬂ:fﬂ&pEﬂholdsm{A,sta)]

we say that O is safisfiable if it has a model.
quysctiCﬁrmnmleTiﬁz{Tplpei}andHriﬁl{ﬂfpipei}

I!mﬁ.lAmPFAnnﬁdimdmlyﬂthesetTTUﬂAd'mgnediommhsumt.‘-1

- satisfiable
Proof

SnppauseﬂntTTUHTAnntﬁaHe,ﬂutnthatlthaamnHMm) Then, by our
&ﬁmtum.allfmmlnqrel‘hddm{A,da),lmtm&EAdna,a-lmthesaqnentI‘I-Als
nm‘..valid.

Se=" ﬂmﬂﬂ'mm&d(&ﬂ)dl‘_ Thm,byourdeﬁmiuns,(ﬂ,dn}lsamdelaf'l'r
Ammgthatﬁuﬂfbnnmsatsﬁaﬂe,ﬂﬁﬂbwsthnﬁxmﬁeﬂ,ﬂﬁdoesmtholdm
M,su}mihnldsm{}l,m} Thas, the sequent ' A is vahd. .

gy

il Semantlc tableaux

Theorem 6.1 ensures tbat we can consxder (non—)sat:sﬁabllxty of sets of signed formulas instead of
consxdcnng validity of sequents. A classical tool for verifying whether a set of signed formulas is
 satisfiable is the method of semantic tableaux introduced originally in [Beth 59] and then modified to
- cover the non-standard three-valued case in [Koletsos 76], where it was used to develop a sound and

~complete Gentzen-style formalization of the three-valued Kleene calculus.

In the sequel we follow the general line of [Koletsos 76], although we have a somewhat different _
set of rules, as we are dealing with a different calculus here. Therefore we omit most technicalities
which may be found-in [Koletsos 76] (this includes some technical lemmas and detailed proofs) and

e concentrate on explaiming the general 1dea., highlighting the key points of the reasoning and dlscussmg

some details specific to the calculus we are formalizing.
Let us start with an informal description of the method. :

. A semantic tableau for a ﬁm\f.e set) of signed formulas is a binary tree of signed formulas {to
- be more precise: of their occurrences) which may be used to determine whether) is satisfiable. It
is built downwards (i-e from the root towards the leaves) starting from a chain containing all the
formulas in 2. The basic idea is that each branch of the tree should contain all formulas which must
- be s:mul‘ta.neously satisfied if is to be satisfied. Thus, each maximal branch represents an alternative
“way” of satisfying . A branch B is expa.nded downwards or split into two branches by appending
- new formu]a(s) which must hold in order that some formula p € B hold. If, for example, p = T(a A f).

then B is expanded by appending Ter (and TS) since the only way to make T(a A B) true is to make
~ both Ta and TA true. ¥ p = NT(a A B) then B is split at the end, with one subbranch containing
NTe and the other contaming NT 3, since there are two ways to make NT(a A B) true: one is to make
NTe true, and the other is to make NT 3 true. The semantics of formulas may be used to determine =
- whole set of such rules for expanding and splitting branches. We refer to these rules as tableau rules.
© " In fact, we have just mentioned three such tableau rules for ‘the calculus we are formalizing:

T(aA ﬁ) L T(@AB) NI(aAB)
Ta T8 " Nla I NTA

Fach branch is e‘xpande& until we encounter a- contradlctmn, i.e. discover a palr of signed formulas
that cannot be simultaneously true. Then the branch is closed by applymg one of the following two
closure rules: :

SRR Ty

T NTe

which Bst the “forbidden™ pairs of forulas. Such a branch (traditionally marked by a double line at
its end) is not expanded further, as it does not represent any possible way of satisfying §2. The lack
of what one might think to be a closure rule 4

NTy
NT—p

expresses the fact that the law of excluded. middle does not hold for the logic we formalize.
With this ideas im mind let us try to give a bit more formal definition.

e

A semantic tablear for a set & = {py,.. ,pn} of signed formulas is a , downward progressing tree =
of signed formulas which is- ather of the form

P1
P2

P

or has been obtained from a.nother semantic tableau for Q by applying one of the tableau rulas gwen
in Section 11, where a tableau rule of the form

3

Tl Al _Ql._- (el
'0’. i 0'1 (23]

. may be apphed toa bra.nc.h B of a tableau if B contains P and then

v

- # as a result of applying the rule --?’— to B, thls bra_.nch is expanded by attaching o to its end, and

® as a result of applying the rule Pc; to B; this branch is split at the end into two subbranches
o1 :

¥ _ 2 : :
with o; added at the end of the left subbranch and ¢, added at the end of the right subbranch. -

Some of the rules given in Section 11 deserve spec1a.l attenion, as they reﬂect the speccl:ﬁc peculantm
of McCarthy s conuectw& For example, the rule

_Tavp '
Ta | T(—-a AB):
mchcates the cha.ractenst:c a.symmetry of McCarthy’s disjunction. Indeed, &V ﬁ is-true if and only if
either @ is true (for the evaluation is “lazy™) or —a A § is true, ie. o is false (but defined) and B is

true.
By a dual analysis we obtain the rules:

NTavg) ., _N(@Vvp)

NTa NT—a | NTA

Indeed, if a V 8 is not true then certmn]y o cannot be true, and moreove, either —a or § must not
be true. : :
' Since we use Kleene's qua.ntlﬁers the rules for guantified formulas are the same as in [Koletsos 76)
and we do not discuss them here.

It should be pointed out, though, that similarly as in [Koletsos 76] for ea.ch connective (or quan-
tifier) we have two sets of tableau rules: one for formulas formed using this connective, and another
- for negations of such formulas. This, of course, is a consequence of the fact that we are dealing with a
three-valued calculus here, and hence we have to know the truth of both a formula and its negation to
Trecover its original value (in the three-valued case, T~ and NT are not equivalent — cf. Fact 6.1).
Thus, the above tules describing disjunction must be considered together with the following:

To(aV) To(aVf) NT=(a v §)

T : T4 NIl —a l NT-p

Ao

It is perhaps worth pomtmg out that alternatlvely we could have used here de Morgan’s law ir
the form of the rules:

" T-(aV) NT=(aV8)
Tl—a A =) NT (e A =8).

We would need fewer tableaux rules then (as well as fewer rules in the formal logiéai systems w
derive from them) but we feel that the overall justxﬁca,tlon of the soundness and completeness of t&
resulting systems would be less clear.
A branch of a semantic tableau is- closed if it contains a pair of {ormulas appearing in one of th
closure rules given in Section 11: -
-G ke Te
T NTe

A semantic tableau is closed if all its branches are closed
A semantic tableau is complete if none of its open branches can be expanded any further b
applying any of the ru_les

Example 7.1 Consider a set {8 = {T(~(a A B) V v), NT(a V +)} of signed frmulas. We assume tha:
o, f and v are mutually distinct elementary formulas. A complete semantic tablean for Q has the
following form:

T(~(aAB)V7)
NT(a V) :
T—(a A ,3) T(==(aAB) A7)

T T(a A -‘1,3) : S T- —-(a A ,5)

NTe T - Ty
NT - l NT~ P] T(aApB)

PR T ' NTa : Te :

NT o

The tableau is complete since we cannot expand its only open branch by applying any new rule, as all :
the rules apphca.ble to the formulas of this bra,nch have already been applied. Of course, the tableau
“is not closed — it has an open branch. - i]

Ix_ltuitively, a s,et of signed formulas with a closed semantic tablean cannot be satisfiable, as each .
of the alternative ways leading to its satisfiability results in a contradiction. The opposite implication
is true as 'well' :

Theorem 7. 1 A ﬁmte set § C SForm of 31gned formulas is not satisfiable if and only if it-has a
closed semantic tableau. :

Proof A detailed proof of the analogous result given in [Koletsos 76] may be applied also in our
case with little modification reflecting the differences in the tableau rules (which in turn reflect the
 differences between MK - and K-calculi). Thus, we omit the details and just sketch the main ideas.
The “if” part seems lntu]tlvely obvious (see the remarks preceding the theorem) and can be proved
3 by sample technical ven:ﬁcatmn {induction on the structure of the closed semantic tableau). -

¥

._'24_...

The “only if” part is proved by constructing a model for every finite set of signed formulas that
does not have a closed sema.ntlc tableau. Namely, for any such set {) one can built a complete semantic
tablean which has at least one open branch B. It turns out that. the formulas ‘of B form so-called
Hintikka set of signed formulas (to put it briefly, B is closed under the tableau rules). This implies

that B may be used to construct a-model {4, sta) which satisfies all the formulas of B, and so is a i

model of £. The set of values of A may be taken to be the set of all terms of our language with the'
semantics of function- symbols defined in the obvmus way. Then, for any m=1,2,..., for p__E.Prcd
and terms 7 € Value , We deﬁ.ne - e

Popi= 1 ETHOEB, e e e
- Jf HT-p(@)eB,
ee otherwise.

Notice now that the elements of B with the derivability relation determined by the tableat rularform

-a graph with no infinite paths (even though B may be mﬁmte) By an obvious. mductlcm on the

s'tr'uctue of this graph we can show that any signed formula. P e B holds in {4, sta) o

Example 7.2 Theorem 753 n:nphes that the set Q of 51gned formulas oanmdered in Exa,mple Tilris
satisfiable. We can construct a model for it following the idea outlined in the proof of Theorem 7.1.
The only open branch of the complete tablean for & given in Example 7.1 is B = {T(=(aA RY

7); NT(a V 7), Ta(a A B), Tﬁa NTa N'T'y} Then the constructmn yields a structure A in which (sta

 is the identity):

Jr since Tra € B

Fur.a.sta =

Fope.B.sta = ee _ gince neither T4 € B mor T—',B eB

Fumgey.sta = ee - since neither Ty € Bnor T-y € B
Hence: :

Fage (—(a A BYV y).sta = tt, and so SE.T(~(a A B) V 7).sta = i,
Fm.(q V4).sta = ee, and.so SF.NT (a V 7).sta = tt.

Thus indegd, (A, sta) is a model of Q. - : o

Theorems 6.1 and 7.1 directly imply the followmg key iact

Corollary 7.1 A sequenf; TEAs vahd if and only if the set TF u NTA of s1gned formu.las has a
closed tableau. ST : o

8. A complete deduction 'system for vél'id'séquents

. Corollary 7.1 hints at a certain method of obtaining a deduction system for valid ge_(juents out of the set
- of tableau rules. This method was discussed in [Koletsos 76], although we find the presentation there

far from clear.. Moreover, that paper is not easily available, and since we certainly feel that the method

is worth popularising, we will outline it in this section, giving in addition explicit forms of inference
rules for the sequent calculus corresponding to the basic types of tableau rules (in [Koletsos 76] each

inference rule was derived separately, which obscured the general pattern of reasoning).

—25—

Fu-st some notation: for amy finite set 0 C SForm of signed formulas, by seq.{) we denote the
sequent T+ A where @ = TT'UNTA. Notice that Corollary 7.1 may be rephrased as follows: for any
: ﬁmte set 1 C SForm of szgned formulas seq.f) is va.hd if and only if 2 has a closed tableau,

Now consxder a tableau rule of the fonn -—g—_ g

- Then, by the deﬁmtmns of Section 7, any branch of a semant:c tableau that contains p may be
-expanded by adding & to it: Consequently, for any finite set @ C SForm of signed formulas, U {p}
‘has ‘a closed tableau provided that U {p,c} has a closed tableau. Hence, by Corollary 7.1, the
sequent seq.(Q U {p}) is valid whenever the sequent seq.(2U {p,0}) is. For example, taking p = To
and o = T, the tableau rule of the form :
Te -
T

gives rise to the following inference rule for deriving valid sequents:

Lo, A
Lok A

;"Z fhel'l the. infereqce rule %—%

T(aAB
Ta

In other Wdrds, if we have a tableau rule leads from valid

sequents to valid sequents.

In particular, since one of our tableau rules is , we can include in the deduction system

for valid sequents the follovtlring inference rule:

T,aAB,ak A
I‘,a/_.\ﬂFAA

The situation with the splitting rules of the form L5 quite similar. Here we know that for any
O' O

ﬁmte set) C SForm of signed formulas QU {p} has a closed tableau provided that both QU {p, o)
and QU {p, 02} have closed tableaux. Henoe the sequent seq.(Q2U {p}) is valid whenever the sequents
seq.(Q U {p,o}) and seq.(QU {p, o1}) are. For example, taking p & NTw, oy 2 NTef; and o, & NTﬂrg,

the tableau rule _
NTe

NT3; [NT,

gives rise to the following inference rule for deriving valid sequents:

i I‘}-A’tpa'd)l ri-a,lps':bﬂ
TEA,

NT (a A ; 5 :
In particular, since one of our tableau rules is MN%’ we can include in the deduction system

for valid sequents the following inference rule:

TEAaAfa TFEAaASB
PEAaAB '

==0n

What is not very elegant here is that apparently we are- forced to include ¢ a.nd al B, respectlvely,
in thetop seguents of the above rules, although intuitively they should not be necessary, In fact, we
‘can get rid of them in the presence of the universally a.coepted thinning r'u.les

THA AL
; : EobEd - B Ao 7
whzch clearly lead from valid sequents to valid sequents We omit a sn:nple pmof that in the presenoe
_ of the thinning rules the four rules of we have menmoned above are. equava.lent 1o, respectlvely

Db A oo L TEA TEAg -0
and i _ - ot

PooEN o e TEA TEAP

e v " TFAsanp

The above considerations are summarized in the following table which- glves the inference rules for
deriving valid sequents induced by_ tableau rules of the form we are using:

Tableau_ rule | Inference rule for sequents .
T e s e
To TeLk
NTe o N A S,
N s AL
LT r%ra T4,k A.
T[Ty | TpbaA
NTe " THAY TFA b
NT3y | NTeh, | _TFAe

It seems even more obvious how the closure rules for tableaux give rise to axioms of the sequent
calculus. By the closure rules, for any finite set C SForm of signed formulas, the sets QU{Te, T-u,o}
and U {Ty, NTe} have closed tableaux, and so the corresponding sequents:

T,e,mpb A and T,pkAp

may be taken as axioms of the calculus for deriving valid sequents.

Applying the above schema to each of the tablean rules (given in Section 11, the first column) we
obtain a set of inference rules for deriving valid sequents induced by the tableau rules. These inference
rules are listed in Section 11 (second column) together. with the extra thinning rules and the axioms.

We have obtained thus a deductive system for our sequent calculus. From now on it will be denoted
by SC. For any sequent ' F A, we will write I' kg A if the sequent T I A is derivable in 8C, i.e. if
it can be derived from the axioms of SC by means of the rules of SC (applied finitely many times).

Theorem 8.1 A sequent T }- A is valid if and only if it is derivable in SC, thatis, I = A if and only
If r }‘gg A

ARG

. Proof By Corollary 7. 1 it is enough to prove tha,t for any ﬁmte set 2 C SForm of signed formulas,
i ﬂ has a closed tableau if and only if the sequent seq.f) is derivable in SC.

A proof of the “if” part (soundness of &) has been in fact outlined above. We have de:ﬁned the

- inference rules and axioms of SC in such a way that any derivation of a sequent I' F o A determines
105 closed tableau for the set TT' U NI'A (We onnt a formal proof by induction on the structure of the
: .denVa.twn)

. And vice versa. a.ny closed tablean for & set O determines a derivation of the sequent seq.Q in
+ 8C. This, huwever, is exactly the “only if” part of the theorem (completeness of SC). Again, we just
- outline a formal proof. We proceed by induction on the stmctu:e of the closed tableau, moving from

'the leaves of the tableau towards its root. :

* For any node in the semantic tableau, which we will 1dent1fy with the beanch B leading from the
zoot to this node, we prove that the sequent corresponding to the set of signed formulas on this branch

- (we write seq.B to denote this seguent) is derivable in SC. Since all the branches of the tableau are

 closed, this clearly holds for the leaves of the tablean (the corresponding sequents are axioms of SC).

Then, conszder any branch B a.nd suppose that in the semantic tableau a rule of the form —- i- : aphicd
o

" fo B. By the inductive hypothesxs we know that the sequent corresponding to the branch resulting
from B by the application of this rule is derivable in SC. However, th].s sequent is just seq. (B u {o})
-',a.ndthem.{uenoe & - e

: ; * seq.(B| U {c})

_seq.B

=i dsan msta.nce of the mferenoe rule of SC currespondmg to the above tableau rule (reca.l] that p € B
:' -since the above tableau rule was applied to B). Hence, the sequent seq.B is indeed derivable in SC

- . The case in which a splitting rule is applied to B may be dealt with in the same way. i

. We stop the induction at the node for which B is just the initial set of signed formulas. Recall

-~ that since the tableau is closed, it is finite, and so the induction indeed terminates. . A derivation of -

- the sequent seq.Q in SC may be recovered from the tableau as the induction steps indicate. ~ O

9. A natural deduct'ion sy_stem

Intuitively, by a natural deduction we mean the process of deducing conclusions from assumptions
used in- everyday life.. Such a process is fotma..hzed by two types of log1ca.1 systems: Gentzen-style
. sequent calculi (like that discussed in Section 8) and so-called natural deduction systems. An extensive
classical study of natural deduction systems may be found in [Prawitz 65]. ‘Here we will only give a
brief description of such systems and develop such a system for the logic we are studying.
A natural deduction system is composed solely of inference rules, used for drawing immediate
conclusions from given assumptions. The inference rules are of the form

o 00
Pi wvvie Pa
g
where ©1, --:, @n and ¢ are formulas and Ty, ..., T, are finite sets of formulas. Such a rule should

1 he read: if we have derived @1, ..., @n from Ty, ..., Ty, respectively, then ¢ is true without any

e

additional assumptions, i.e. we can derive ¢ from i, ..., ¢ “discharging” assumptions I'y, ..., [
used to derive @1, ..., on, TESpectively. :
A typical simple form of such a rule is, of course, when all the sets Ty, ..., [, are empty. We
write such rules simply as follows: ¢ ; : i
5 : : ST
' P

which should be read: if all @1, ..., @5 are true then ¢is true as well.?
A standard example of a rule where some assumptxons are indeed dlscha,rged is the following rule
of classical logic
() (A

which should be read: if & V § is true, we have derived ¢ from @, and we have derived ¢ from 3,

then i is true without any additional assumptions (that is, we ca,n'."'discha,rge” assumptions o and 8
previously used to prove p). _ kA

"The notion of a derivation tree in such a natural deduction system is defined mductwel} Any
(occurrence of a) formula is such a tree. More complex. trees are formed using the inference rules of

@1 .- Pn

the system in the obvmu_s;way. For exa.mple, if we have an inference rule and we have

built derivation trees Ty, ..., T, with formulas @1, ..., @n, Tespectively, at their roots, then we can
use this rule to form a derwatlon tree with the formula ¢ at its root and with the trees Ty, ..., Tn as
the immediate subtrees. G

The case of a rule like

el sk
@B e P
P

is a bit more complex. Namely, given derivation trees T1; Tz and T3 with formulas a V 8, ¢, and
&, Tespectively, at their roots, we can use this rule to form a new derivation tree with the formula ¢
at its root and T3, Tp and Ty as its immediate subtrees (as before) but additionally we are allowed
to mark occurrences of the formula o at the leaves of T; and occurrences of 3 at the leaves of T as
“discharged”. o
Tn general, given an inference rule

(T1) (Ta)
2 DR .
@
and derivation trees Ty, ..., T, with formulas iy, ..., @,, respectively, at their roots, we can use -
this rule to form 2 derivation tree with the formula ¢ at its root, with the trees Ty, ..., Ty as its

immediate subtrees, and with the occurrences of formulas in I';,...,I'x at the leaves of the trees Ty,
, Tn, respectively, marked as “discharged”.

2 Natural deduction systems with all inference rules of this form are sometimes referred to as Hilbert-style
systems. In fact, Gentzen-style sequent calculi may be viewed as Hilbert-style systems over a formal language
where sequents are viewed as individual formulas.

Sienn

Now, a derivation of a formula i from assumptions I in a natural deduction system is any derivation
tree in this system with the formula ¢ at its root and all the formulas at its leaves that are not marked
as “discharged” in the set T\ - :

There is an obvious way to compare natural deduction systems with Gentzen-style systems (over
‘the same logical language). For example, we say that a Gentzen-style system is equivalent to a natural
deduction system whenever a sequent of the form I' - {6} is derivable in the Gentzen-style system i
and only if there is a derivation of § from T in the natural deduction system. 55

Notice that we have to consider here again only single-conclusion sequents, as there is no obvig:
‘way of generalizing natural deduction systems to the multi-conclusion case. From mow on, singl
conclusion sequents as above will be written in the form I F 6. In this context if is important fc
realize that, roughly, in the Gentzen-style sequent calculus we have defined in the previous section -
single-conclusion sequent may be derived if and only if it may be derived using only single-conclusio:
sequents. : :

In the rest of this section we will develop a natural deduction system NDS equivalent to the sequen:
calculus for deriving valid sequents; SC, defined in the previous section. '

There can be no uniform way to define a natural deduction system equivalent to a given Gentzen-
style sequent calculus. There is, however, an obvious strategy which we will try to employ hers
Roughly: : :

) fox_' each axiom I' I § of SC, there must be a rule of NDS allowing us to derive § from B

o for each inference rule of SC of the form

S EaES et Ta
r+é

there must be a rule of NDS allowing us to construct a derivation of 6 from I given derivations
of 8y, ..., 8, from, respectively, I'y, ..., T',.

There is no uniform recipe for finding an NDS rule corresponding in the above sense to a given
SC rule. We must simply examine the rules of SO (in their single-conclusion versions) and guess an
appropriate NDS rule. We will discuss a few typical cases.

The simplest case is that of an inference rule of SC of the form

'k ._,...-I‘F'wn
Tk '

which clearly corresponds to a natural deduction inference rule of the form

Y1 .- @n
¥

Then, an SC inference rule of the form

Dok §
L,pF8

Elapite

induces in the.‘above sense an NDS rule —?:; Indeed, given a derivation of & from I' U {¢} we can

replace the leave(s) holding the formula r,a by derivation(s) of ¢ from ¢ built in the trivial way using
this rule and then we obtain a derivation of § from T U {}.
The most complicated case is that of the SC rules like -

P afh: ToahBEd .- o Doaké: Tap=gkd
T,avpré : CEola NI

Then, the corresponding natural —dedud‘.ion- ruies are: oy .
ey (nang) : (o) (aA—B) .
aVp. b & “=lanf) & e
; s i : AR

~ Tt is clear how the axioms of SC translate to the rules of NDS: fnhe'axiom I, ~yp, e b 6 induces the
e TP

rule _ The other axiom, [, I ¢ needs no natural deduction rule, since by definition there is

always a derivation of ¢ from any set that contains ¢.

: TH§
_ : T,pké
any derivation of 6 from I is a derivation of & from any set that includes T'.

It remains to consider the thinning rules. The rule needs no natural deduction rule, as
B PiEA : : - S
The other thinning rule, W’ deserves some special attention (although it does not require

any natural deduction rule either) as it is the only rule that allows us to derive a single-conclusion
sequent from a non-single-conclusion one. This is the case if we take A = . However, it is quite clear
then that the orily way to derive the sequent I' F § is using the axiom IV, =, o+ A, and then we can

apply the rule —sp—*;-—c'a— to obtain a derivation of § from T'.

We can apply the above ideas to all the ruleé of the SC calculus listed in Section 11 (second
colurnn) to obtain the set of natural deduction rules listed in Section 11, third column. We will refer ;
to this natural deduction system as NDS, and write T' Fpps 6 if there is a derivation of § from I' in
NDS. : .

Theorem 9.1 If 2 sequent [' b § is derivable in SC then there i a derivation of & from T, that is,
Treé implies T'Faps 6

Proof: Follows ﬁmtly by induction on the derivatién of T F & in §; the induction steps were
informally described above. . : ST s T

Theorem 9.2 For any finite set I‘ C Form of formulas and formula é € Form,
res i Trwsé
Proof The “f” part (soundness of NDS) may be checked directly by examining each of the inference

rules of NDS.
The “only if” part (completeness of NDS) follows directly from Theorems 8.1 and 9.1. - a

G

10. Final remarks

To conclude the paper, let us try to indicate briefly how the logical system presented here may be
used in program specification and verification. Very roughly, we have the following model in mind:

- Most programming languages used nowadays are parameterized by an underlying structure con-
sisting of data the programs of the language operate on and of functions and predicates the programs
may use as elementary operations and predicates on the data. Given such a structure, the (semantics
of) programs are usually presented in terms of their input/output behaviour as state transformations.
Three-valued predicates over this structure may be defined in our formalized logic by (open) formulas.
Now, in our view, they may be used to describe adequately properties of states. Consequently, prop-
erties of state transformations (i.e., properties of programs) may be formulated in terms of so-called
superpredicates, i-e. relations between predicates. This view has been developed and presented in
detail in [Blikle 81a, 81b] where four such superpredicates were discussed (cf. also [Blikle 88]). Since
they are all mutually definable in terms of each other, let us concentrate on one of them.

Let A be a structure and let p,q: State — Boolerr be two predicates over. A. We say that p is
stronger than g, written p = g, if g.ste = tt whenever p.sta = tt for every state sta over A. The
superpredicate

= Predicate x Predicate — {tt, ff}

is not expressible in our formalized langnage: roughly, there is no formula s#(_, _) with two “holes” such
that for any structure A (with the semantics of formulas Fy, V € {MK, K}) and any two formulas
w,1 € Form, Fy.w = Fy.¢) if and only if the formula si(p,) strongly (resp., weakly) holds. in A
(cf. [Blikle 87]). It is easy to see that to build such a formula we need a non-monotone propositional
connective. For example, if the definedness operator A (cf. Sec. 2) were added to our formalized
language then , : g '
‘ st(ip, %) = Ap D (p D (Ap A 4h))

There is, however, another possibility which is more in the spirit of the system we present here.
Namely, we can use the s-s- V—consequence relation (which itself may be v:ewed as a non-monotone
superpredicate):

Let us assume that the class of data structures on which the'considerecl programs are expected to
operate is definable by a set Az of closed formulas. In fact, this in turn may be viewed as a specification
of programs that implement the “primitive” functions and predicates of the data structure. Then; for
any two formulas ¢, ¢ € Form, for any structure A (w1th the semantics of formulas Fy, V S {MI\ kK1)
in this class (i.e., strongly satisfying Az)

Fop= Fop iff Az,p kY, v

Of course, the latter fact may be proved using the formal logics we have presented here (for V = MK).
It should be emphasized, however, that yet another approach is possible. Superpredicates are
_total, ylelding always true or false; and so they may be viewed as classical predicates of a classical |
second-order theory we are working in. Thus, this classical second-order theory may be used directly
to prove relationships between partial predicates, and hence properties of programs as well. In this
approach, suggested in [Blikle 88], the need for a special three-valued logic disappears at all.
Much more experience is necessary to dec1de which of the approaches outlined above is best suited
for- pra.ctlca.l apphcatlons

S

A Appendix: The three formal systems

Tableau rules

Sequent calculus SC

‘Natural d'edgdi(in system NDS

Farsy | kA T Tang
Ta T akfEA Ay i
T e lB) SRR EAL e @B
i e R WY Wi
NT(aAB) - | TkAa THAB da
3 NTaINTﬂ e .Tl"' A,a_.f\ﬁ : aApB -
Tﬂ(a /\ﬂ) : I’_,—‘ai— A T,aA =AF A _.(—, Aﬂ) (f_‘;‘) : (aAé“ﬂ)
T-a [T(a A—B) TT,~(@Af)F O e S
NT—(a A B) Tk Ao e
NT e i P]"A,—{(C!f\ﬂ) e "(0/\,8)
NT~(aeAB) TFA,a THA,-B i
NTe | NT-8 T+ A,~(ahB) Tnahf)
Te | T(na AB) eV B EA v
NT(aVB) L TEAe T
Nl 5 TEAaVE avVE
NT(aVB) TFA-a THAS -a g
NT-a | NTS TEAaVE. P T
T-(aVf) T,~akA ~(aV B)
Toa . T,~(avB)FA = > R
To(a V) LA s B)
T-8 T,~(aVBFA s
NT=(aV B) TEA-a THA S e T
NT-or | NT-8 TFA,~{aVE) ~{aV B)
_T—|—|O‘ F,(II"A . -
e [m-ebA a
NT--a T e L«
.NTQ P}_Aa—."'.'a o B 1 4

continued on the next page

Tableau rules Sequent ca.lcuius e 5 Natural deduction system NDS
T(¥2)pla]) Lk a2 (v2)ole]
Telt] 7 T, (Vz)p[z] Fa el
NT((2)ell) “7 | TrAel *Y ely)
- NTely] LF A4, (Yo)pls] _(Yr)olz] -
T=((V)elal) “™ | Topl)b A Y ~(Vo)elz] "7

T-ely] : I, ~(Vz)ple] F A [y .

NT (V) pla]) THA,—pl] ~pff]
NTplf] TF 4, ~(Vo)ela] TSVe)el]
T(@a)ele]) 7 | o Deflka & (Ee)plz] 7

Tely] = I, (3z)elz] F A - ely] :
NT(Ez)ele]) © | _Trael © ol
5 NT 3] TF A, (Fz)¢la] (Go)el7]
To(@a)els]) @ | _ Foelgra @ ~(Ez)pla]
T[] T,~(F)elz] F A ~¢ld
NT=(@2)ele) “7| TFa-el 7 ~¢ly]
NT —[y] TF A, —(3e)ple] ~(3)¢[e]
(thinning rules)
— EE-A TEA —
Liob A - TEAle
Closure rules Axioms
Tcp :
Tp Lo~k A - 510
e
NT;PV T,e }_ A:Q" —

®) ¢isan arbitrary term;

(%) 4 is & new variable (i.e., respectively, y does not occur free in the formulas in the branch of the
‘tableau where this rule is applied, y does not occur free in the formulas of ' and of A, y does
not occur free in non-discharged assumptions).

In the above table @, B, ¢ and § stand for arbitrary formulas, P and A for arbitrary finite sets of
formulas, and z for an arbitrary identifier. :

g

12, References

[Avron 87]
Simple consequence relations. :
Report ECS-LFCS-87-30, Laborato:y for Foundations of Computer SCJence, University of Ed-
_inburgh, June 1987. :

[Barringer; Cheng & Jones 84]
Barringer, H., Cheng, J.H., Jones, C.B.:
A logic covering undefinedness in program proofs. o 5 e get
Acta Informatica 21(1984), 251-269. g ' '

Beth 59]
Beth, E.W.
The Foundations of Mathematics.
North-Holland 1959.

[Blikle 81a]
L
On the development of correct specified programs.
IEEE Transactions on Software Engineering SE-7(1981), 251-169.

[Blikle 81b]
Blikle, A :
The clean termination of zt.era.twe programs.
Acta Informatica 16(1981), 199-217.

[Blikle 87]
Blikle, A.
MetaSoft Primer: Towards a Metalanguage for Applied Denotatlonal Sema.nt;cs
LNCS vol.288, Springer-Verlag 1987.

[Blikle 88
Blikle, A.
A calculus of three-valued predicates for software specification and validation.
in: Proc. VDM-Europe Symposium 1988, LNCS, Springer-Verlag 1988, this volume.

[Cheng 86]
Cheng, J.H.
A logic for p&rtxa.l functlons
PhD thesis, Department of Computer Science, University of Manchester 1986; Report UMCS—
86-7-1. .

[Goguen 77]
i Goguen, J.A.
Abstract errors for abstract data types - ;
in: Proc. IFIP Working Conference on the Formal Description of Programﬂung Concepts,

St.Andrews 1977 (E.Neuhold, ed.), North Holland 1978

o ge .

[Hoogewijs 79]
Hoogewijs, A. :
On a formalization of the non—deﬁnedness notion.
Zeltschnftf Math Loglk u. Grundlagen d. Math 25(1979), 213- 221

'[Hoogewus 83] -
Hoogewijs, A. -
A partial predicate calculus in a two-valued logic.

Zeitschrift f. Math. Logik u. Grundlagen d. Math. 29(1983), 239-243.

[Hoogewijs 87]
Hoogewijs, A.
Partial-predicate logic in computer science.
Acta Informatica 24(1987), 381-393.

[Jones 86]
Jones, C.B. N
Systematic Software Development Using VDM
Prentice-Hall 1986.

[J ones 87] S : =
- Jones, C.B. :
VDM proof obligations and their _]ustlﬁca.tlon

in: VDM - A Formal Method at Work, Proc. VDM- Europe Symposium 1987, LNCS vol.252
_ Springer-Verlag 1987, 260-286. :

[Kleene 38]
Kleene, S.C.
On notation for ordinal numbers.
Joumal of Symbohc Logic 3(1938), 150-155.

[Kleene 52]
Kleene, 5.C.
Introduction to Mathematics.
North Holland 1952, then republished in 1957 59, 62, 64, T1.

[Koletsos 78]
Koletsos, G.
Sequent calculus and partial logic. :
MSc thesis, The University of Manchester 1976.

[McCarthy 61]
McCarthy, J
A basis for a mathematical theory of computation.
Western Joint Computer Conference, May 1951; then published in: Computer Programmin;
and Formal Systems (P.Braffort, D.Hirshberg, eds.) North-Holland 1967, 33-70.

- — 36—

[Owe 85]
; Owe, O
- An approach to program reasoning based op 2 first-o

Research Report 89, Instmite of In{ormancs, Umvers

rder logic for partial functions.
ity of Oslo, February 1985.

[Prawitz 65}
Prawitz, D. -
Natural Deduction.
Almqmst & Wﬂ;sell StocLhoim 1965

